skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leach, Alexander J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wound healing presents a unique challenge for patients with diabetes. Gas therapies have gained significant attention in the wound-healing community. Carbon monoxide (CO) is a small molecule that is well known for its immune-modulating properties when administered at sublethal concentrations. CO is currently in clinical trials for lung disease, sickle cell anemia, and organ transplantation. Here, we investigated the effects of CO in an in vitro wound-healing model and subsequently developed and tested CO gas-entrapping materials (CO-GEMs) for topical application on wounds to promote healing. In this study, we report the efficacy of CO-GEMs in treating full-thickness wounds and pressure ulcers in diabetic mouse models. Collectively, our findings demonstrate that these novel gas entrapping materials could serve as an alternative therapy to both protect the wound bed and promote healing and replace bulky hyperbaric chambers, standard gauze wound dressings, or expensive skin grafts. 
    more » « less